Send to

Choose Destination
Biochemistry. 1997 Aug 5;36(31):9464-77.

Reductive half-reaction of thioredoxin reductase from Escherichia coli.

Author information

Department of Biological Chemistry, University of Michigan, and Department of Veterans Affairs Medical Center, Ann Arbor, Michigan 48105, USA.


Thioredoxin reductase is a homodimeric flavoenzyme containing a flavin adenine dinucleotide (FAD) and a redox-active disulfide in each subunit. Structural work on the enzyme from Escherichia coli suggests that thioredoxin reductase exists in two conformations, both of which are necessary for catalysis [Waksman, G., Krishna, T. S. R., Williams, C. H., Jr., & Kuriyan, J. (1994) J. Mol. Biol. 236, 800-816]. These factors make it likely that the mechanism of this enzyme is complex. The rapid reaction of enzyme with nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) (the reductive half-reaction), proceeds in three phases. The first phase represents the formation of an NADPH-FAD charge transfer complex. The second phase involves FAD reduction, with loss of the NADPH-FAD charge transfer band. The third phase shows a slower decrease in absorbance at 456 nm and the formation of a reduced flavin-NADP+ charge transfer band. These and other results indicate that NADP+ and NADPH compete for the single binding site on oxidized and fully reduced enzyme and that NADP+ release does not limit the third phase of reduction. Experiments that include examination of the reductive half-reactions of active-site mutants, having the active-site disulfide removed by mutating one or both of the active-site cysteines, indicate that the third phase does not represent reduction by a second equivalent of NADPH. Comparison of the rate constants and temperature dependence of the reductive half-reaction with those of turnover show that the reductive half-reaction is not solely rate-limiting in catalysis. The results suggest that wild type and each altered enzyme exists in a unique equilibrium of conformers. It is proposed that the third phase of the reductive half-reaction represents a flavin reduction event largely limited by the conformational change proposed in the structural work.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center