Send to

Choose Destination
Magn Reson Imaging. 1997;15(4):433-40.

Anisotropic water diffusion in white and gray matter of the neonatal piglet brain before and after transient hypoxia-ischaemia.

Author information

Department of Medical Physics and Bioengineering, University College London, UK.


Measurements of tissue water apparent diffusion coefficient (ADC) performed with diffusion sensitization applied separately along the x, y, and z axes revealed significant diffusion anisotropy in both cerebral white and gray matter in six newborn (< 24 h old) piglets. Mean baseline white matter ADC for a particular region of interest was 125.8% (SD 32.0%; p < .001) greater when the diffusion gradients were applied along the y axis as compared to along the x. For the cortical gray matter region considered, the situation was reversed, the mean ADC value measured along x exceeding that along y by 15.2% (SD 6.1%; p < .01). Forty-three hours subsequent to a transient cerebral hypoxic-ischaemic insult, phosphorous MRS measurements indicated that the animals had suffered severe secondary cerebral energy failure. This was accompanied by a significant (p < .01) decrease in the white matter anisotropy, such that the mean y direction ADC now exceeded that along the x by only 70.9% (SD 29.4%; p < .03). There was no change in the gray matter anisotropy. The average of the ADC values measured in the x, y, and z directions had decreased by 35.3% (SD 18.5%; p < .01) in white matter and 31.4% (SD 21.9%; p < .05) in cortical gray matter. Diffusion anisotropy measurements may provide additional information useful in the characterisation of hypoxic-ischaemic injury in the neonatal brain, and must be considered if tissue water ADC values are to be unambiguously interpreted in this context.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center