Send to

Choose Destination
Eur J Biochem. 1997 Jun 1;246(2):301-10.

1H, 15N and 13C NMR assignments, secondary structure and overall topology of the Escherichia coli GlgS protein.

Author information

Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, QC, Canada.


GlgS is a 7892-Da protein which is involved in glycogen biosynthesis in bacteria. We report the 1H, 15N and 13C NMR assignments of the backbone and side-chain resonances at 25 degrees C and pH 6.7 from two-dimensional homonuclear and three-dimensional heteronuclear NMR experiments. The secondary structure of the protein was determined using sequential and medium-range NOE correlations, vicinal 3J(NH-H alpha) coupling values and amide proton exchange rates. The secondary structure obtained is consistent with the secondary chemical shifts of 1H alpha, 13C alpha and 13C = O. It was found that the secondary structure of GlgS comprises two amphipathic helices (Asn10-Met21 and Glu39-Arg60), one short highly hydrophobic helix (Ile30-Val33), a short extended beta-strand-like fragment (Arg26-Asp29) and two type I beta-turns (His22-Gly25 and Thr34-Met37). An overall topology of GlgS is suggested based on long-range NOEs. The elements of secondary structure form a sandwich in which the beta-strand and the short hydrophobic helix are positioned between the two amphipathic helices.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center