Format

Send to

Choose Destination
Vis Neurosci. 1997 May-Jun;14(3):507-22.

Physiology of the A1 amacrine: a spiking, axon-bearing interneuron of the macaque monkey retina.

Author information

1
Department of Biological Structure, University of Washington, Seattle 98195-7420, USA.

Abstract

We characterized the light response, morphology, and receptive-field structure of a distinctive amacrine cell type (Dacey, 1989), termed here the A1 amacrine, by applying intracellular recording and staining methods to the macaque monkey retina in vitro. A1 cells show two morphologically distinct components: a highly branched and spiny dendritic tree, and a more sparsely branched axon-like tree that arises from one or more hillock-like structures near the soma and extends for several millimeters beyond the dendritic tree. Intracellular injection of Neurobiotin reveals an extensive and complex pattern of tracer coupling to neighboring A1 amacrine cells, to two other amacrine cell types, and to a single ganglion cell type. The A1 amacrine is an ON-OFF cell, showing a large (10-20 mV) transient depolarization at both onset and offset of a photopic, luminance modulated stimulus. A burst of fast, large-amplitude (approximately 60 mV) action potentials is associated with the depolarizations at both the ON and OFF phase of the response. No evidence was found for an inhibitory receptive-field surround. The spatial extent of the ON-OFF response was mapped by measuring the strength of the spike discharge and/or the amplitude of the depolarizing slow potential as a function of the position of a bar or spot of light within the receptive field. Receptive fields derived from the slow potential and associated spike discharge corresponded in size and shape. Thus, the amplitude of the slow potential above spike threshold was well encoded as spike frequency. The diameter of the receptive field determined from the spike discharge was approximately 10% larger than the spiny dendritic field. The correspondence in size between the spiking receptive field and the spiny dendritic tree suggests that light driven signals are conducted to the soma from the dendritic tree but not from the axon-like arbor. The function of the axon-like component is unknown but we speculate that it serves a classical output function, transmitting spikes distally from initiation sites near the soma.

PMID:
9194317
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center