Format

Send to

Choose Destination
See comment in PubMed Commons below
Chem Biol. 1997 Feb;4(2):119-25.

Observation of metastable Abeta amyloid protofibrils by atomic force microscopy.

Author information

  • 1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

BACKGROUND:

Brain amyloid plaque, a diagnostic feature of Alzheimer's disease (AD), contains an insoluble fibrillar core that is composed primarily of variants of the beta-amyloid protein (Abeta). As Abeta amyloid fibrils may initiate neurodegeneration, the inhibition of fibril formation is a possible therapeutic strategy. Very little is known about the early steps of the process, however.

RESULTS:

Atomic force microscopy was used to follow amyloid fibril formation in vitro by the Abeta variants Abeta1-40 and Abeta1-42. Both variants first form small ordered aggregates that grow slowly and then rapidly disappear, while prototypical amyloid fibrils of two discrete morphologies appear. Abeta1-42 aggregates much more rapidly than Abeta1-40, which is consistent with its connection to early-onset AD. We propose that the metastable intermediate species be called Abeta amyloid protofibrils.

CONCLUSIONS:

Abeta protofibrils are likely to be intermediates in the in vitro assembly of Abeta amyloid fibrils, but their in vivo role has yet to be determined. Numerous reports of a nonfibrillar form of Abeta aggregate in the brains of individuals who are predisposed to AD suggest the existence of a precursor form, possibly the protofibril. Thus, stabilization of Abeta protofibrils may be a useful therapeutic strategy.

PMID:
9190286
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center