Format

Send to

Choose Destination
Proteins. 1997 Jun;28(2):241-60.

Structural trees for protein superfamilies.

Author information

1
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region. efimov@ipr.serpukhov.su

Abstract

Structural trees for large protein superfamilies, such as beta proteins with the aligned beta sheet packing, beta proteins with the orthogonal packing of alpha helices, two-layer and three-layer alpha/beta proteins, have been constructed. The structural motifs having unique overall folds and a unique handedness are taken as root structures of the trees. The larger protein structures of each superfamily are obtained by a stepwise addition of alpha helices and/or beta strands to the corresponding root motif, taking into account a restricted set of rules inferred from known principles of the protein structure. Among these rules, prohibition of crossing connections, attention to handedness and compactness, and a requirement for alpha helices to be packed in alpha-helical layers and beta strands in beta layers are the most important. Proteins and domains whose structures can be obtained by stepwise addition of alpha helices and/or beta strands to the same root motif can be grouped into one structural class or a superfamily. Proteins and domains found within branches of a structural tree can be grouped into subclasses or subfamilies. Levels of structural similarity between different proteins can easily be observed by visual inspection. Within one branch, protein structures having a higher position in the tree include the structures located lower. Proteins and domains of different branches have the structure located in the branching point as the common fold.

PMID:
9188741
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center