Format

Send to

Choose Destination
Acta Cardiol. 1997;52(2):91-105.

Anatomical architecture and electrical activity of the heart.

Author information

1
Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA.

Abstract

In most early studies of cardiac electrophysiology, the correlation between propagation of excitation and the architecture of cardiac fibers was not addressed. More recently, it has become apparent that the spread of excitation, the sequence of recovery, the associated time-varying potential distributions and the intra- and extracardiac electrocardiograms are strongly affected by the complex orientation of myocardial fibers. This article is a review of older and very recent, partly unpublished, mathematical simulations and experimental findings that document the relationships between cardiac electrophysiology and fiber structure. Important anatomical factors that affect propagation and recovery are: the elongated shape of myocardial fibers which is the basis for electrical anisotropy; the epi-endocardial rotation of fiber direction in the ventricular walls; the epi-endocardial obliqueness of the fibers ("imbrication angle"), and the conduction system. Due to the complex architecture of the fibers, many different pathways are available to an excitation wavefront as it spreads from a pacing site: the straight line; the multiple, bent pathways resulting from the epi-endocardial rotation of fiber direction; the coiling intramural pathways associated with the "imbrication" angles (Streeter) and the pathways involving the Purkinje network. Only in a few cases is the straight line the fastest pathway. The shape of an excitation wavefront at a given time instant results from the competition between all possible pathways. To compute the potential distributions and ECG waveforms generated by a spreading excitation wave we must know the successive shapes and positions of the wavefront, the architecture of the fibers through which it propagates and the spatial distribution of their anisotropic electrical properties.

PMID:
9187417
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center