Format

Send to

Choose Destination
Arch Biochem Biophys. 1997 Jun 15;342(2):261-74.

Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism for procollagenase activation involving nitric oxide.

Author information

1
Department of Microbiology, Kumamoto University School of Medicine, Japan.

Abstract

The involvement of nitric oxide (NO) and its reactive intermediates such as nitrogen dioxide (NO2) and peroxynitrite (ONOO-) in the activation of matrix metallo-proteinase was investigated. The human neutrophil procollagenase (matrix metalloproteinase-8) (M(r), 85 kDa) was purified to homogeneity from human neutrophils by using column chromatography. After incubation of human neutrophil procollagenase with various nitrogen oxide-generating systems, collagenolytic activity in each reaction system was measured. In addition, neutrophil collagenase activity was determined by assessment of proteolysis of human alpha 1-protease inhibitor. NO was formed by the propylamine NONOate, and NO2 was generated by oxidation of NO with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO). NO2, formed by NONOate and carboxy-PTIO, and the synthetic ONOO- exhibited strong activation of the procollagenase at 1-20 microM. Significant activation of the procollagenase was observed with use of authentic NO2 gas as well. Constant flux infusion of ONOO- into the procollagenase solution resulted in stronger procollagenase activation than did a bolus addition of ONOO- to the reaction mixture. However, NO showed only weak activating potential under the aerobic (ambient) condition; an NO concentration of more than 10 mM was needed for appreciable activation of the procollagenase. Of considerable importance was the fact that NO participates in activation of the neutrophil collagenase through its conversion to NO2 or ONOO- in human neutrophils. These results suggest that NO2 and ONOO- may be potent activators of human neutrophil procollagenase.

PMID:
9186487
DOI:
10.1006/abbi.1997.0127
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center