Format

Send to

Choose Destination
Eur J Endocrinol. 1997 May;136(5):445-60.

Growth hormone-releasing peptides.

Author information

1
Department of Internal Medicine, University of Turin, Italy.

Abstract

Growth hormone-releasing peptides (GHRPs) are synthetic, non-natural peptides endowed with potent stimulatory effects on somatotrope secretion in animals and humans. They have no structural homology with GHRH and act via specific receptors present either at the pituitary or the hypothalamic level both in animals and in humans. The GHRP receptor has recently been cloned and, interestingly, it does not show sequence homology with other G-protein-coupled receptors known so far. This evidence strongly suggests the existence of a natural GHRP-like ligand which, however, has not yet been found. The mechanisms underlying the GHRP effect are still unclear. At present, several data favor the hypothesis that GHRPs could act by counteracting somatostatinergic activity both at the pituitary and the hypothalamic level and/or, at least partially, via a GHRH-mediated mechanism. However, the possibility that GHRPs act via an unknown hypothalamic factor (U factor) is still open. GHRP-6 was the first hexapeptide to be extensively studied in humans. More recently, a heptapeptide, GHRP-1, and two other hexapeptides, GHRP-2 and Hexarelin, have been synthesized and are now available for human studies. Moreover, non-peptidyl GHRP mimetics have been developed which act via GHRP receptors and their effects have been clearly demonstrated in animals and in humans in vivo. Among non-peptidyl GHRPs, MK-0677 seems the most interesting molecule. The GH-releasing activity of GHRPs is marked and dose-related after intravenous, subcutaneous, intranasal and even oral administration. The effect of GHRPs is reproducible and undergoes partial desensitization, more during continuous infusion, less during intermittent administration: in fact, prolonged administration of GHRPs increases IGF-1 levels both in animals and in humans. The GH-releasing effect of GHRPs does not depend on sex but undergoes age-related variations. It increases from birth to puberty, persists at a similar level in adulthood and decreases thereafter. By the sixth decade of life, the activity of GHRPs is reduced but it is still marked and higher than that of GHRH. The GH-releasing activity of GHRPs is synergistic with that of GHRH, is not affected by opioid receptor antagonists, such as naloxone, and is only blunted by inhibitory influences, including neurotransmitters, glucose, free fatty acids, gluco corticoids, recombinant human GH and even exogenous somatostatin, which are known to almost abolish the effect of GHRH. GHRPs maintain their GH-releasing effect in somatotrope hypersecretory states such as in acromegaly, anorexia nervosa and hyperthyroidism. On the other hand, their good GH-releasing activity has been shown in some but not in other somatotrope hyposecretory states. In fact, reduced GH responses after GHRP administration have been reported in idiopathic GH deficiency as well as in idiopathic short stature, in obesity and in hypothyroidism, while in patients with pituitary stalk disconnection or Cushing's syndrome the somatotrope responsiveness to GHRPs is almost absent. In short children an increase in height velocity has also been reported during chronic GHRP treatment. Thus, based on their marked GH-releasing effect even after oral administration, GHRPs offer their own clinical usefulness for treatment of some GH hyposecretory states.

PMID:
9186261
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center