Format

Send to

Choose Destination
Neurochem Int. 1997 Jul;31(1):139-50.

Protein kinase C from bat brain: the enzyme from a hibernating mammal.

Author information

1
Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada.

Abstract

Protein kinase C (PKC) from brain of euthermic and hibernating bats (Myotis lucifugus) showed only one form as determined by hydroxylapatite chromatography, compared with three forms found in rat brain. Cross-reaction with antibodies to rabbit alpha, beta, and gamma isozymes showed that bat brain contained only PKC(gamma). During hibernation the activity of PKC in bat brain decreased to 63% of the euthermic value but the percentage that was membrane-associated did not change. Bat and rat brain PKC(gamma) were purified to homogeneity. Both enzymes phosphorylated all three of the substrates tested (FKKSFKL-NH2 peptide substrate, histone H1, protamine), the bat enzyme having significantly higher K(m) values than rat PKC for both peptide and histone. Both enzymes required phospholipids and Ca2+ for activation with rat brain PKC depending almost exclusively on phosphatidylserine. Bat PKC, however, made use of other phospholipids and showed relative activities of 100:81:33:42 for euthermic PKC and 100:91:45:35 for hibernator PKC with phosphatidylserine, phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine (each at 50 microM), respectively. Activation of bat PKC by phosphatidylserine was temperature sensitive, being 3.5-fold at 4 degrees C (hibernating body temperature) compared with 14-18-fold at 33 degrees C (near euthermic body temperature). Arrhenius plots for bat brain PKC showed a sharp break below 10 degrees C; activation energies below this temperature were 11.5- and 5.2-fold greater than at higher temperatures for the enzyme from hibernating versus euthermic animals. By contrast, plots for the rat enzyme were linear over the range 0-42 degrees C. The data suggest that a sharp suppression of PKC activity by several mechanisms (reduced total activity, low temperature effects on activity and sensitivity to phospholipids) may be important to overall metabolic rate suppression during hibernation.

PMID:
9185174
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center