Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1997 Jun 13;272(24):15488-95.

A recombinant protein of two high molecular weight glutenins alters gluten polymer formation in transgenic wheat.

Author information

Department of Plant Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.


Wheat high molecular weight glutenin subunits (HMW-GS) are the most important determinants of its superiority for making leavened bread. Following synthesis, these proteins are sequestered into the endoplasmic reticulum and assemble into extremely large elastic polymers, linked by noncovalent and intermolecular disulfide bonds. To study the structural requirements for the assembly of HMW-GS, we have expressed in transgenic wheat a recombinant protein between two cognate x- and y-type subunits. In contrast to the natural polymerized x- and y-type HMW-GS, a significant amount of the recombinant subunit remained monomeric. Nonreducing SDS-polyacrylamide gel electrophoresis, coupled with limited proteolysis, showed that the monomeric form of the recombinant subunit contained an unusual intramolecular disulfide bond, linking an N-terminal cysteine to the single C-terminal cysteine residue. In addition, sucrose gradient analysis revealed that this intramolecular disulfide bond impeded the ability of the recombinant subunit to assemble into polymers. Despite of its altered assembly, a notable amount of the overexpressed recombinant subunit was also present in glutenin polymers. Moreover, its presence significantly altered the subunit composition of the polymer. Our results show that it is possible to modify gluten assembly and properties by expressing recombinant HMW-GS in transgenic wheat, and have a major implication for the improvement of wheat bread-making quality.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center