Format

Send to

Choose Destination
See comment in PubMed Commons below
Biosens Bioelectron. 1997;12(4):287-99.

A cell-based immunobiosensor with engineered molecular recognition--Part I: Design feasibility.

Author information

1
Department of Chemical, Bio & Materials Engineering, Arizona State University, Tempe 85287-6006, USA.

Abstract

A novel bioelectronic sensor is described in which living immune cells are transformed into unique biotransducer couples by engineering their molecular recognition for preselected antigens of clinical interest. This 'hybrid' biosensor, constructed with mast cells interfaced to a microfabricated thermoelectric device with the use of biomolecular linkages, is capable of detecting antigens in real time by transducing minute heat changes arising from antigen-induced mast cell activation processes. The thermoelectric approach was selected based upon preliminary bioenergetic calculations which indicated that metabolic changes arising from mast cell antigen recognition result in a significant increase in exothermic heat relative to basal metabolic conditions. Experimental studies confirmed that mast cell activation and degranulation can be discriminated theramally from basal metabolic activity. Results obtained from microcalorimetry experiments using cultured mast cells (MC/9) mucosal-like mast cell line), and harvested mast cells (rat peritoneal mast cells) indicated that detectable increases in heat output (-3 +/- 0.5 pW/cell, mean peak output) immediately followed cell activation. The construction of a miniature hybrid immunobiosensor device was made possible by bioelectronic coupling achieved with the use of cellular adhesive proteins that immobilized non-adherent (MC/9) cells as well as adherent (RBL-2H3 rat basophilic leukemia) cells to the thermopile. Results from preliminary tests conducted on a hybrid biosensor prototype validated the design feasibility of a miniature, living cell immunodiagnostic biosensor. Such cell-based hybrid biosensor approaches may greatly extend the capability for selective, rapid, on-site, antigen detection for a wide range of clinically relevant antigens and offer new approaches to in vitro diagnostics.

PMID:
9178514
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center