Format

Send to

Choose Destination
See comment in PubMed Commons below
Toxicol Appl Pharmacol. 1997 May;144(1):171-6.

Cadmium inhibits DNA strand break rejoining in methyl methanesulfonate-treated CHO-K1 cells.

Author information

1
Institute of Zoology, Academia Sinica, Taipei, Republic of China.

Abstract

The cogenotoxicity of Cd has been recognized. This effect may stem from Cd inhibition of DNA repair. We studied the effects of Cd on DNA repair of methyl methanesulfonate (MMS)-damaged Chinese hamster ovary cells (CHO-K1) by single-cell alkaline electrophoresis. The results indicate that in the presence of Cd, DNA strand breaks accumulated in MMS-treated cells. Using hydroxyurea (Hu) plus cytosine-beta-D-arabinofuranoside (AraC) to block DNA polymerization, DNA strand breaks accumulated and Cd had little inhibitory effects on these accumulations. However, Cd inhibited the rejoining of these DNA strand breaks, which could be rejoined 6 hr after release from Hu plus AraC blockage. These results indicate that the potency of Cd inhibition of DNA repair replication and/or ligation may be greater than the inhibition of DNA adduct excision. To further elucidate this mechanism, we used an in vitro cell-free assay system to analyze the Cd effects on DNA repair synthesis, DNA polymerization, and DNA ligation. We have shown a dose-dependent inhibition of these three activities by Cd in CHO-K1 cell extract. The IC50s of Cd were 55, 26, and 10 microM, respectively. Moreover, Cd inhibition of DNA ligation in cell extract could be recovered partially by thiol compounds such as glutathione, beta-mercaptoethanol, dithiothreitol, and metallothionein. Since both in vivo and in vitro studies demonstrated that Cd was more effectively involved in interfering with the DNA ligation step and that thiol agents could partially remove Cd inhibition of DNA ligation, we speculate that part of the Cd inhibition of DNA repair may be through binding of Cd to the proteins participating in DNA ligation.

PMID:
9169081
DOI:
10.1006/taap.1997.8116
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center