Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurochem. 1997 Jun;68(6):2328-37.

Characterization of CPP32-like protease activity following apoptotic challenge in SH-SY5Y neuroblastoma cells.

Author information

1
Department of Immunopathology, Parke-Davis Pharmaceutical Research, Warner-Lambert Company, Ann Arbor, Michigan 48105, U.S.A.

Abstract

We characterized the activation of interleukin-1beta-converting enzyme (ICE)-like proteases (caspases) in human neuroblastoma cells (SH-SY5Y) following challenge with staurosporine, an established agent known to induce apoptosis. Time course analyses of lactate dehydrogenase release detected a significant increase in cell death as early as 6 h that continued at least until 24 h following staurosporine treatment. Western blot analyses using anti-poly(ADP-ribose) polymerase (anti-PARP) and anti-CPP32 antibodies revealed proteolytic processing of CPP32 (an ICE homologue) as well as fragmentation of PARP as early as 3 h following staurosporine challenge. Furthermore, the hydrolysis of the CPP32 substrate acetyl-DEVD-7-amido-4-methylcoumarin was detected as early as 3 h and became maximal at 6 h after staurosporine challenge, suggesting a delayed and sustained period of CPP32-like activation. In addition, we used the first immunohistochemical examination of CPP32 and PARP in cells following an apoptotic challenge. The localization of CPP32 in untreated SH-SY5Y cells was exclusively restricted to the cytoplasm. Following staurosporine challenge there was a condensing of CPP32 immunofluorescence from the cytoplasm to a region adjacent to the plasma membrane. In contrast, PARP immunofluorescence was evenly distributed in the nucleus in untreated SH-SY5Y cells and on staurosporine challenge was found to be associated with condensed chromatin. It is important that a pan ICE inhibitor [carbobenzoxy-Asp-CH2OC(O)-2,6-dichlorobenzene] was able to attenuate lactate dehydrogenase release and PARP and CPP32 cleavage and altered immunohistochemical staining patterns for PARP and CPP32 following staurosporine challenge.

PMID:
9166725
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center