Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1997 May 27;94(11):5628-33.

Messenger RNA deadenylylation precedes decapping in mammalian cells.

Author information

Institut Jacques Monod du Centre National de la Recherche Scientifique, Université Paris 7, Tour 43, 2 Place Jussieu, 75251 Paris Cedex 05, France.


In yeast, the major mRNA degradation pathway is initiated by poly(A) tail shortening that triggers mRNA decapping. The mRNA is then degraded by 5'-to-3' exonucleolysis. In mammalian cells, even though poly(A) tail shortening also precedes mRNA degradation, the degradation pathway has not been elucidated. We have used a reverse transcription-PCR approach that relies on mRNA circularization to measure the poly(A) tail length of four mammalian mRNAs. This approach allows for the simultaneous analysis of the 5' and 3' ends of the same mRNA molecule. For all four mRNAs analyzed, this strategy permitted us to demonstrate the existence of small amounts of decapped mRNA species which have a shorter poly(A) tail than their capped counterparts. Kinetic analysis of one of these mRNAs indicates that the decapped species with a short poly(A) tail are mRNA degradation products. Therefore, our results indicate that decapping is preceded by a shortening of the poly(A) tail in mammalian cells, as it is in yeast, suggesting that this mRNA degradation pathway is conserved throughout eukaryotic evolution.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center