Format

Send to

Choose Destination
Biochemistry. 1997 May 6;36(18):5546-53.

Acyl-CoA binding proteins inhibit the nonenzymic S-acylation of cysteinyl-containing peptide sequences by long-chain acyl-CoAs.

Author information

1
Department of Biochemistry, McGill University, Montréal, Québec, Canada.

Abstract

Acyl-CoA binding proteins (ACBPs) from rat and bovine liver were found to inhibit the nonenzymic S-acylation of two representative types of peptides by long-chain acyl-CoAs. As demonstrated previously [Quesnel, S. & Silvius, J. R. (1994) Biochemistry 33 13340-13348; Bharadwaj, M., & Bizzozero, O. A. (1995) J. Neurochem. 65, 1805-1815], peptides with the sequences myristoyl-GCG, myristoyl-GCV, and IRYCWLRR-NH2, all representing physiological S-acylation sites in mammalian proteins, become S-acylated at appreciable rates in the presence of long-chain acyl-CoAs and large unilamellar lipid vesicles. Addition of ACBP at physiological molar ratios with respect to long-chain acyl-CoAs strongly inhibits the spontaneous S-acylation reaction, in a manner that can be quantitatively described by assuming that the ACBP sequesters the acyl-CoA with nanomolar affinity in a complex unable to serve as an S-acyl donor. From these results, we calculate that at physiological (intracellular) concentrations of ACBP, long-chain acyl-CoAs, and membrane lipids the expected half-times for spontaneous S-acylation of such protein sequences by long-chain acyl-CoAs will lie in the range of several tens of hours. The nonenzymic reaction of protein cysteine residues with long-chain acyl-CoAs is thus unlikely to contribute significantly to the physiological modification of signaling and other proteins that show relatively rapid rates of S-acylation in mammalian cells. However, it cannot be excluded that a nonenzymic reaction with long-chain acyl-CoAs could contribute to the physiological S-acylation of certain membrane proteins if the latter exhibit very slow kinetics of S-acylation in vivo.

PMID:
9154938
DOI:
10.1021/bi963029h
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center