Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1997 May 23;272(21):13467-70.

Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density.

Author information

Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0615, USA.


Calcium/calmodulin-dependent protein kinase II (CaMKII) undergoes calcium-dependent autophosphorylation, generating a calcium-independent form that may serve as a molecular substrate for memory. Here we show that calcium-independent CaMKII specifically binds to isolated postsynaptic densities (PSDs), leading to enhanced phosphorylation of many PSD proteins including the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)-type glutamate receptor. Furthermore, binding to PSDs changes CaMKII from a substrate for protein phosphatase 2A to a protein phosphatase 1 substrate. Translocation of CaMKII to PSDs occurs in hippocampal slices following treatments that induce CaMKII autophosphorylation and a form of long term potentiation. Thus, synaptic activation leads to accumulation of autophosphorylated, activated CaMKII in the PSD. This increases substrate phosphorylation and affects regulation of the kinase by protein phosphatases, which may contribute to enhancement of synaptic strength.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center