Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1997 Apr 25;268(1):31-6.

Protein secondary structure prediction using local alignments.

Author information

Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA.


The accuracy of secondary structure prediction methods has been improved significantly by the use of aligned protein sequences. The PHD method and the NNSSP method reach 71 to 72% of sustained overall three-state accuracy when multiple sequence alignments are with neural networks and nearest-neighbor algorithms, respectively. We introduce a variant of the nearest-neighbor approach that can achieve similar accuracy using a single sequence as the query input. We compute the 50 best non-intersecting local alignments of the query sequence with each sequence from a set of proteins with known 3D structures. Each position of the query sequence is aligned with the database amino acids in alpha-helical, beta-strand or coil states. The prediction type of secondary structure is selected as the type of aligned position with the maximal total score. On the dataset of 124 non-membrane non-homologous proteins, used earlier as a benchmark for secondary structure predictions, our method reaches an overall three-state accuracy of 71.2%. The performance accuracy is verified by an additional test on 461 non-homologous proteins giving an accuracy of 71.0%. The main strength of the method is the high level of prediction accuracy for proteins without any known homolog. Using multiple sequence alignments as input the method has a prediction accuracy of 73.5%. Prediction of secondary structure by the SSPAL method is available via Baylor College of Medicine World Wide Web server.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center