Send to

Choose Destination
Am J Physiol. 1997 Apr;272(4 Pt 1):L690-8.

Most basal I(SC) in Calu-3 human airway cells is bicarbonate-dependent Cl- secretion.

Author information

Cystic Fibrosis Research Laboratory, Stanford University, California 94305-2130, USA.


Serous cells secrete antibiotic-rich fluid, but secretion is impaired in cystic fibrosis. We are investigating Calu-3 cells as a serous cell model. Basal short-circuit current (I[SC]) in Calu-3 cells grown at air interface had a basal I(SC) approximately six times larger than submerged cultures (69 +/- 22 vs. 11 +/- 10 microA/cm2). Basal I(SC) in either condition was reduced only 7 +/- 5% by bumetanide and was unaffected by apical amiloride, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), or calixarene but was reduced 77 +/- 18% by N-phenylanthranilic acid. Three transport mechanisms accounted for almost all basal I(SC). The largest component is HCO3(-)-dependent Cl- secretion. Replacement of Krebs-Henseleit solution with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid-buffered solution and changing gassing from 95% O2-5% CO2 to air reduced the basal I(SC) by 61 +/- 10%. Acetazolamide decreased basal I(SC) by 33 +/- 6%, whereas acetazolamide + basolateral DNDS eliminated 42-58% of the bumetanide-insensitive basal I(SC). Neither DNDS nor acetazolamide had any effect when applied in HCO3(-)-free solution. Apical phlorizin, a blocker of Na+-glucose cotransport, eliminated one-half of the remaining I(SC). Cl- replacement with gluconate eliminated all I(SC) except the phlorizin-sensitive component. Unlike basal I(SC), 80 +/- 24% of stimulated I(SC) was inhibited by bumetanide. Thus basal and stimulated secretions are mediated by different mechanisms.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center