Format

Send to

Choose Destination
Am J Physiol. 1997 Apr;272(4 Pt 1):G853-62.

Role of plasma vasopressin as a mediator of nausea and gastric slow wave dysrhythmias in motion sickness.

Author information

1
Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109, USA.

Abstract

The possible role of vasopressin in nausea and gastric dysrhythmias in motion sickness was tested by electrogastrography in 14 subjects during circular vection (60 degrees/s) and vasopressin infusion. Tachygastria was expressed as the signal percent >4.5 cycles/min. Vection evoked nausea scores of 2.6 +/- 0.2 (0 = none to 3 = severe) in 10 subjects with increases in tachygastric activity (15 +/- 2 to 45 +/- 3%) and plasma vasopressin (4.5 +/- 1.5 to 8.4 +/- 2.5 pg/ml) that were blocked by atropine but not indomethacin. Four asymptomatic subjects had no tachygastria or vasopressin release. Vasopressin at 0.2 U/min (plasma level = 322.1 +/- 10.3 pg/ml) evoked nausea (2.6 +/- 0.4) and increases in tachyarrhythmic activity (41 +/- 5%) that were blunted by atropine but not indomethacin. There were no differences in nausea or dysrhythmias with vasopressin infusion in subjects who noted nausea during vection versus those who did not. To conclude, vection evokes nausea, dysrhythmias, and vasopressin release in motion sickness-susceptible humans via cholinergic prostaglandin-independent pathways. Supraphysiological vasopressin infusions evoke nausea and dysrhythmias by similar pathways to equal degrees in motion sickness-susceptible and -resistant subjects. Thus central but not peripheral actions of vasopressin may contribute to nausea and slow wave disruption with vection. Blunting of both the release and action of vasopressin by atropine may explain its beneficial action in motion sickness.

PMID:
9142918
DOI:
10.1152/ajpgi.1997.272.4.G853
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center