Send to

Choose Destination
J Neurophysiol. 1997 Jan;77(1):76-85.

Characterization of a P-type calcium current in a crayfish motoneuron and its selective modulation by impulse activity.

Author information

Department of Biological Sciences, University at Albany, State University of New York 12222, USA.


Previous studies have demonstrated that the voltage-dependent Ca2+ current recorded from the cell body of the crayfish abdominal motoneuron, F3, undergoes a long-term reduction as a result of increased impulse activity. The properties of the Ca2+ channels undergoing this long-term change were examined with the use of two-electrode voltage-clamp techniques. The Ca2+ current was activated at -50 to -40 mV and its amplitude was maximal at 0 mV (-135.0 +/- 25.8 nA, mean +/- SE, n = 14). The current-voltage relationship and the greater sensitivity of the Ca2+ channel to Cd2+ than Ni2+ indicated that Ca2+ influx occurs through high-voltage-activated (HVA) Ca2+ channels. Loose-patch recordings demonstrated that the Ca2+ current was generated by the membrane of the cell body. When Ba2+ was substituted for extracellular Ca2+, there was a 40% increase in the amplitude of the inward current and a negative shift of approximately 10 mV in the I-V relationship. Application of the P-type Ca2+ channel antagonist omega-agatoxin IVA (omega-AgTX IVA) produced a significant 33% (n = 6) reduction in the peak amplitude of the Ba2+ current, whereas neither the L-type Ca2+ channel antagonist nifedipine nor the N-type channel antagonist omega-conotoxin GVIA produced a reduction in the Ba2+ current. The voltage-dependent activation of this P-type (omega-AgTX-IVA-sensitive) Ca2+ channel was similar to previously identified P-type channels, but different from that of the non-P-type (omega-AgTX-IVA-resistant) Ca2+ channels. When Ca2+ currents were measured 6-7 h after an increase in impulse activity (5-Hz stimulation for 45-60 min), there was a 43% reduction in the amplitude of the P-type current, but no significant changes in the non-P-type current amplitude. These results demonstrate that at least two subtypes of HVA Ca2+ channels contribute to the macroscopic Ca2+ current observed in the cell body of this crayfish phasic motoneuron: one belongs to the previously described P-type Ca2+ channel and the other(s) does not belong to the N-, L-, or P-type Ca2+ channel. The long-term, Ca(2+)-dependent reduction in Ca2+ current previously demonstrated in motoneuron F3 is produced by the selective reduction of this P-type Ca2+ current. This activity-dependent reduction in the P-type Ca2+ current is likely involved in the long-term depression of transmitter release observed at the neuromuscular synapses of this motoneuron.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center