Format

Send to

Choose Destination
See comment in PubMed Commons below
J Clin Invest. 1997 Apr 1;99(7):1739-50.

Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency.

Author information

1
Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA.

Abstract

The highly regulated secretion of effector cytokines by CD4+ T cells plays a critical role in immune protection against pathogens such as cytomegalovirus. Here, we directly compare the frequency and functional characteristics of cytomegalovirus-specific CD4+ memory/effector T cells in normal and HIV+ subjects using a novel, highly efficient multiparameter flow cytometric assay that detects the rapid intracellular accumulation of cytokine(s) after short-term (6 h) in vitro antigen stimulation. Responses in this assay correlate precisely with independent measures of sensitization history (e.g., seroreactivity), and allow the simultaneous assessment of multiple cytokines in single effector T cells. Healthy HIV- individuals manifested an average of 0.71, 0.72, 0.38, and 0.06% CD4+ T cells responding to cytomegalovirus with gamma-IFN, TNF-alpha, IL-2, and IL-4 production, respectively, with the simultaneous production of gamma-IFN, TNF-alpha, and IL-2 being the most common effector phenotype. Significantly, overall cytomegalovirus-specific CD4+ effector frequencies were markedly higher among 40% of HIV+ subjects (2.7-8.0%), and demonstrated a predominately polarized gamma-IFN+/TNF-alpha+/IL-2-/IL-4- phenotype. In contrast, CD4+ effector frequencies for heterologous, nonubiquitous viruses such as the mumps virus were low or absent in the HIV+ group. These data suggest the existence of homeostatic mechanisms in HIV disease that selectively preserve memory T cell populations reactive with ubiquitous pathogens such as cytomegalovirus-likely at the expense of T cell memory to more sporadically encountered infectious agents.

PMID:
9120019
PMCID:
PMC507995
DOI:
10.1172/JCI119338
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Society for Clinical Investigation Icon for PubMed Central
    Loading ...
    Support Center