Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1997 May;17(5):2391-400.

POU domain factors of the Brn-3 class recognize functional DNA elements which are distinctive, symmetrical, and highly conserved in evolution.

Author information

Department of Psychiatry, University of California, San Diego, La Jolla, USA.


To better understand the diversity of function within the POU domain class of transcriptional regulators, we have determined the optimal DNA recognition site of several proteins of the POU-IV (Brn-3) subclass by random oligonucleotide selection. The consensus recognition element derived in this study, ATAATTAAT, is clearly distinct from octamer sites described for the POU factor Oct-1. The optimal POU-IV site determined here also binds Brn-3.0 with significantly higher affinity than consensus recognition sites previously proposed for this POU subclass. The binding affinity of Brn-3.0 on its optimal site, several variants of this site, and several naturally occurring POU recognition elements is highly correlated with the activation of reporter gene expression by Brn-3.0 in transfection assays. The preferred DNA recognition site of Brn-3.0 resembles strongly the optimal sites of another mammalian POU-IV class protein, Brn-3.2, and of the Caenorhabditis elegans Brn-3.0 homolog Unc-86, demonstrating that the site-specific DNA recognition properties of these factors are highly conserved between widely divergent species.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center