Send to

Choose Destination
J Neurochem. 1997 May;68(5):1846-52.

Differential agonist regulation of the human kappa-opioid receptor.

Author information

Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104, U.S.A.


Opiates are potent analgesics used clinically in the treatment of pain. A significant drawback to the chronic use and clinical effectiveness of opiates is the development of tolerance. To investigate the cellular mechanisms of tolerance, the cloned human kappa-opioid receptor was stably expressed in human embryonic kidney (HEK 293) cells, and the effects of opioid agonist treatment were examined. The receptor-expressing cells showed specific high-affinity membrane binding for a kappa-selective opioid, 3H-labeled (+)-(5alpha,7alpha,8beta)-N-methyl-N-[7-(1-pyrrolidiny l)-1-oxaspiro [4,5] dec-8-yl] benzeneacetamide ([3H]U69,593), and a nonselective opioid antagonist, [3H]diprenorphine. Pretreatment with pertussis toxin or guanosine 5'-O-(3-thiotriphosphate) reduced [3H]69,593 binding, indicating that the human K receptor coupled to G proteins of the Gi or Go families in HEK 293 cells. The receptor-mediated inhibition of adenylyl cyclase was abolished by pertussis toxin pretreatment and was blocked by a kappa-selective antagonist, norbinaltorphimine. A 3-h pretreatment with a kappa-selective agonist, (+/-)-trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide (U50,488), caused receptor down-regulation, whereas no receptor down-regulation was found after levorphanol pretreatment. U50,488 or dynorphin A(1-17) pretreatments (3 h) desensitized the ability of U50,488 or dynorphin A(1-17) to inhibit cyclic AMP accumulation, as evidenced by a decrease in functional potency. Also, U50,488 pretreatment desensitized the ability of levorphanol to inhibit forskolin-stimulated cyclic AMP accumulation. In contrast, pretreatment of cells with either levorphanol or a potent nonselective opioid, etorphine, resulted in no apparent receptor desensitization. Taken together, these results demonstrate that the human kappa receptor is differentially regulated by selective and nonselective opioid agonists, with selective agonists able to desensitize the receptor.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center