Send to

Choose Destination
See comment in PubMed Commons below
J Natl Cancer Inst. 1997 Apr 16;89(8):556-66.

Protective effects of silymarin against photocarcinogenesis in a mouse skin model.

Author information

Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA.



Nonmelanoma skin cancer is the most common cancer among humans; solar UV is its major cause. Therefore, it is important to identify agents that can offer protection against this cancer.


We evaluated the protective effects of silymarin, a flavonoid compound isolated from the milk thistle plant, against UVB radiation-induced nonmelanoma skin cancer in mice and delineated the mechanism(s) of its action.


For long-term studies, three different protocols of treatment were employed, each evaluating protection by silymarin at a different stage of carcinogenesis. Female SKH-1 hairless mice were subjected to 1) UVB-induced tumor initiation followed by phorbol ester-mediated tumor promotion, 2) 7,12-dimethylbenz[a]anthracene-induced tumor initiation followed by UVB-mediated tumor promotion, and 3) UVB-induced complete carcinogenesis. Forty mice were used in each protocol and were divided into control and treatment groups. Silymarin was applied topically at a dose of 9 mg per application before UVB exposure, and its effects on tumor incidence (% of mice with tumors), tumor multiplicity (number of tumors per mouse), and average tumor volume per mouse were evaluated. In short-term studies, the following parameters were measured: formation of sunburn and apoptotic cells, skin edema, epidermal catalase and cyclooxygenase (COX) activities, and enzymatic activity and messenger RNA (mRNA) expression for ornithine decarboxylase (ODC), a frequently observed marker at tumor promotion stage. Fisher's exact test was used to evaluate differences in tumor incidence, two-sample Wilcoxon rank sum test was used for tumor multiplicity and tumor volume, and Student's t test was used for all other measurements. All statistical tests were two-sided.


In the protocol with UVB-induced tumor initiation, silymarin treatment reduced tumor incidence from 40% to 20% (P = .30), tumor multiplicity by 67% (P = .10), and tumor volume per mouse by 66% (P = .14). In the protocol with UVB-induced tumor promotion, silymarin treatment reduced tumor incidence from 100% to 60% (P<.003), tumor multiplicity by 78% (P<.0001), and tumor volume per mouse by 90% (P<.003). The effect of silymarin was much more profound in the protocol with UVB-induced complete carcinogenesis, where tumor incidence was reduced from 100% to 25% (P<.0001), tumor multiplicity by 92% (P<.0001), and tumor volume per mouse by 97% (P<.0001). In short-term experiments, silymarin application resulted in statistically significant inhibition in UVB-caused sunburn and apoptotic cell formation, skin edema, depletion of catalase activity, and induction of COX and ODC activities and ODC mRNA expression.


Silymarin can provide substantial protection against different stages of UVB-induced carcinogenesis, possibly via its strong antioxidant properties. Clinical testing of its usefulness is warranted.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center