Format

Send to

Choose Destination
Mol Microbiol. 1997 Mar;23(6):1203-13.

Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.

Author information

1
Department of Biotechnology, Faculty of Engineering, Fukuyama University, Hiroshima, Japan.

Abstract

Catabolite repression of Bacillus subtilis catabolic operons is supposed to occur via a negative regulatory mechanism involving the recognition of a cis-acting catabolite-responsive element (cre) by a complex of CcpA, which is a member of the GalR-Lacl family of bacterial regulatory proteins, and the seryl-phosphorylated form of HPr (P-ser-HPr), as verified by recent studies on catabolite repression of the gnt operon. Analysis of the gnt promoter region by deletions and point mutations revealed that in addition to the cre in the first gene (gntR) of the gnt operon (credown), this operon contains another cre located in the promoter region (creup). A translational gntR'-'lacZ fusion expressed under the control of various combinations of wild-type and mutant credown and creup was integrated into the chromosomal amyE locus, and then catabolite repression of beta-galactosidase synthesis in the resultant integrants was examined. The in vivo results implied that catabolite repression exerted by creup was probably independent of catabolite repression exerted by credown; both creup and credown catabolite repression involved CcpA. Catabolite repression exerted by creup was independent of P-ser-HPr, and catabolite repression exerted by credown was partially independent of P-ser-HPr. DNase I footprinting experiments indicated that a complex of CcpA and P-ser-HPr did not recognize creup, in contrast to its specific recognition of credown. However, CcpA complexed with glucose-6-phosphate specifically recognized creup as well as credown, but the physiological significance of this complexing is unknown.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center