Send to

Choose Destination
Free Radic Biol Med. 1995 Mar;18(3):617-20.

Inhibition of redox cycling of methoxatin (PQQ), and of superoxide release by phagocytic white cells.

Author information

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.


The iodonium compounds diphenyleneiodonium and diphenyliodonium, and the amine compounds, 4,5-dimethyl phenylene diamine, N,N-dimethyl 1,4-phenylene diamine, 1,2-diamino-4,5-methyleneoxybenzene, and aminomalononitrile inhibit methoxatin's (PQQ's) redox activity in vitro, that is, the methoxatin-coupled oxidation of glycine and reduction of nitroblue tetrazolium to formazan. The compounds mentioned above also inhibit phorbol myristate acetate (PMA) stimulated superoxide release by phagocytic white cells--determined mainly as the superoxide dismutase sensitive reduction of ferricytochrome C. Related compounds, 3,4-diaminopyridine and 4-dimethylamino-benzylamine, did not inhibit redox activity of PQQ in vitro, nor did they inhibit PMA stimulated superoxide production in monocytes or neutrophils. Thus, there is a correlation between an agent's ability to inhibit PQQ redox cycling and its ability to inhibit superoxide release by phagocytes. The findings are a further indication that PQQ is involved in the respiratory burst of phagocytic cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center