Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1997 Apr 8;36(14):4309-16.

Identification of Mg2+-binding sites and the role of Mg2+ on target recognition by calmodulin.

Author information

1
Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon.

Abstract

The binding of Mg2+ to calmodulin (CaM) and the effect of Mg2+ on the binding of Ca2+-CaM to target peptides were examined using two-dimensional nuclear magnetic resonance and fluorescence spectroscopic techniques. We found that Mg2+ preferentially binds to Ca2+-binding sites I and IV of CaM in the absence of Ca2+ and that Ca2+-binding site III displays the lowest affinity for Mg2+. In contrast to the marked structural transitions induced by Ca2+ binding, Mg2+ binding causes only localized conformational changes within the four Ca2+-binding loops of CaM. Therefore, Mg2+ does not seem to be able to cause significant structural effects required for the interaction of CaM with target proteins. The presence of excess Mg2+ (up to 10 mM) does not change the order and cooperativity of Ca2+ binding to CaM, and as expected, the structure of Ca2+-saturated CaM is not affected by the presence of Mg2+. However, we found that the binding of Ca2+-saturated CaM to target peptides is affected by Mg2+ with the binding affinity decreasing as the Mg2+ concentration increases. Three different peptides, corresponding to the CaM binding domain of skeletal muscle myosin light-chain kinase (MLCK), CaM-dependent cyclic nucleotide phosphodiesterase (PDE), and smooth muscle caldesmon (CaD), were examined and show different reductions in their affinities toward CaM. The CaM-binding affinity of the MLCK peptide in the presence of 50 mM Mg2+ is approximately 40-fold lower than that seen in the absence of Mg2+, and a similar response was observed for the PDE peptide. The affinity of the CaD peptide for CaM also shows a Mg2+ dependence, though to a much lower magnitude. The Mg2+-dependent decrease in the affinities between CaM and its target peptides is an intrinsic property of Mg2+ rather than a nonspecific ionic effect, as other metal ions such as Na+ do not completely replicate the effect of Mg2+. The inhibitory effect of Mg2+ on the formation of complexes between CaM and its targets may contribute to the specificity of CaM in target activation in response to cellular Ca2+ concentration fluctuations.

PMID:
9100027
DOI:
10.1021/bi962759m
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center