Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1997 Apr;63(4):1382-8.

Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil.

Author information

Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany.


The use of dilution culture techniques to cultivate saccharolytic bacteria present in the anoxic soil of flooded rice microcosms allowed the isolation of three new strains of bacteria, typified by their small cell sizes, with culturable numbers estimated at between 1.2 x 10(5) and 7.3 x 10(5) cells per g of dry soil. The average cell volumes of all three strains were 0.03 to 0.04 microns3, and therefore they can be termed ultramicrobacteria or "dwarf cells." The small cell size is a stable characteristic, even when the organisms grow at high substrate concentrations, and thus is not a starvation response. All three strains have genomic DNA with a mol% G+C ratio of about 63, are gram negative, and are motile by means of a single flagellum. The three new isolates utilized only sugars and some sugar polymers as substrates for growth. The metabolism is strictly fermentative, but the new strains are oxygen tolerant. Sugars are metabolized to acetate, propionate, and succinate. Hydrogen production was not significant. In the presence of 0.2 atm of oxygen, the fermentation end products or ratios did not change. The phylogenetic analysis on the basis of 16S ribosomal DNA (rDNA) sequence comparisons indicates that the new isolates belong to a branch of the Verrucomicrobiales lineage and are closely related to a cloned 16S rDNA sequence (PAD7) recovered from rice paddy field soil from Japan. The isolation of these three strains belonging to the order Verrucomicrobiales from a model rice paddy system, in which rice was grown in soil from an Italian rice field, provides some information on the possible physiology and phenotype of the organism represented by the cloned 16S rDNA sequence PAD7. The new isolates also extend our knowledge on the phenotypic and phylogenetic depths of members of the order Verrucomicrobiales, to date acquired mainly from cloned 16S rDNA sequences from soils and other habitats.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center