Format

Send to

Choose Destination
Nat Genet. 1997 Apr;15(4):381-4.

Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor.

Author information

1
Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.

Abstract

The rhizomelic form of chondrodysplasia punctata (RCDP) is an autosomal recessive disease of peroxisome biogenesis characterized by deficiencies in several peroxisomal proteins, including the peroxisomal enzymes of plasmalogen biosynthesis and peroxisomal 3-ketoacyl thiolase. In cultured fibroblasts from patients with this disorder, both the peroxisomal targeting and proteolytic removal of the amino-terminal type 2 peroxisomal targeting sequence (PTS2) of thiolase are defective, whereas the biogenesis of proteins targeted by carboxyterminal type 1 peroxisomal targeting sequences (PTS1) is unimpaired. We have previously isolated a Saccharomyces cerevisiae peroxisomal biogenesis mutant, pex7 (formerly peb1/pas7), which demonstrates a striking similarity to the cellular phenotype of RCDP fibroblasts in that PTS1 targeting is functional, but the peroxisomal packaging of PTS2 targeted thiolase is lacking. Complementation of this mutant has led to the identification of the protein ScPex7p, a PTS2 receptor. In this paper we report cloning of the human orthologue of ScPEX7, and demonstrate that this is the defective gene in RCDP. We show that expression of human PEX7 in RCDP cells rescues PTS2 targeting and restores some activity of dihydroxyacetone phosphate acyltransferase (DHAP-AT), a peroxisomal enzyme of plasmalogen biosynthesis, and we identify the mutations responsible for loss of function of PEX7 in a compound heterozygote RCDP patient. These results imply that several peroxisomal proteins are targeted by PTS2 signals and that the various biochemical and clinical defects in RCDP result from a defect in the receptor for this class of PTS.

PMID:
9090383
DOI:
10.1038/ng0497-381
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center