Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1997 Mar;77(3):1294-305.

Endogenous firing patterns of murine spiral ganglion neurons.

Author information

Department of Biological Sciences, Rutgers University, Piscataway, New Jersey 08855-1059, USA.


Current-clamp recordings with the use of the whole cell configuration of the patch-clamp technique were made from postnatal mouse spiral ganglion neurons in vitro. Cultures contained neurons that displayed monopolar, bipolar, and pseudomonopolar morphologies. Additionally, a class of neurons having exceptionally large somata was observed. Frequency histograms of the maximum number of action potentials fired from 240-ms step depolarizations showed that neurons could be classified as either slowly adapting or rapidly adapting. Most neurons (85%) were in the rapidly adapting category (58 of 68 recordings). Measurements of elementary properties were used to define the endogenous firing characteristics of both the neuron classes. Action potential number varied with step and holding potential, spike amplitude decayed during prolonged depolarizations, and spike frequency adaptation was observed in both rapidly and slowly adapting neurons. The apparent input resistance, spike amplitude decrement, and instantaneous firing frequency differed significantly between rapidly and slow adapting neurons. Inward rectification was evaluated in response to hyperpolarizing contrast current injections. Present in both electrophysiological classes, its magnitude was graded from neuron to neuron, reflecting differences in number, type, and/or voltage dependence of the underlying channels. These data suggest that spiral ganglion neurons possess intrinsic firing properties that regulate action potential number and timing, features that may be crucial to signal coding in the auditory periphery.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center