Format

Send to

Choose Destination
Protein Sci. 1997 Mar;6(3):543-55.

A proposed architecture for the central domain of the bacterial enhancer-binding proteins based on secondary structure prediction and fold recognition.

Author information

1
Departamento de Reconocimiento Molecular Bioestructura, Universidad Nacional Autónoma de México, México. joel@ibt.unam.mx

Abstract

The expression of genes transcribed by the RNA polymerase with the alternative sigma factor sigma 54 (E sigma 54) is absolutely dependent on activator proteins that bind to enhancer-like sites, located far upstream from the promoter. These unique prokaryotic proteins, known as enhancer-binding proteins (EBP), mediate open promoter complex formation in a reaction dependent on NTP hydrolysis. The best characterized proteins of this family of regulators are NtrC and NifA, which activate genes required for ammonia assimilation and nitrogen fixation, respectively. In a recent IRBM course (@ontiers of protein structure prediction," IRBM, Pomezia, Italy, 1995; see web site http://www.mrc-cpe.cam.uk/irbm-course95/), one of us (J.O.) participated in the elaboration of the proposal that the Central domain of the EBPs might adopt the classical mononucleotide-binding fold. This suggestion was based on the results of a new protein fold recognition algorithm (Map) and in the mapping of correlated mutations calculated for the sequence family on the same mononucleotide-binding fold topology. In this work, we present new data that support the previous conclusion. The results from a number of different secondary structure prediction programs suggest that the Central domain could adopt an alpha/beta topology. The fold recognition programs ProFIT 0.9, 3D PROFILE combined with secondary structure prediction, and 123D suggest a mononucleotide-binding fold topology for the Central domain amino acid sequence. Finally, and most importantly, three of five reported residue alterations that impair the Central domain. ATPase activity of the E sigma 54 activators are mapped to polypeptide regions that might be playing equivalent roles as those involved in nucleotide-binding in the mononucleotide-binding proteins. Furthermore, the known residue substitution that alter the function of the E sigma 54 activators, leaving intact the Central domain ATPase activity, are mapped on region proposed to play an equivalent role as the effector region of the GTPase superfamily.

PMID:
9070437
PMCID:
PMC2143673
DOI:
10.1002/pro.5560060304
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center