Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1997 Feb;77(2):797-811.

Human lumbosacral spinal cord interprets loading during stepping.

Author information

1
Department of Neurology, University of California, Los Angeles 90095, USA.

Abstract

Studies suggest that the human lumbosacral spinal cord can generate steplike oscillating electromyographic (EMG) patterns, but it remains unclear to what degree these efferent patterns depend on the phasic peripheral sensory information associated with bilateral limb movements and loading. We examined the role of sensory information related to lower-extremity weight bearing in modulating the efferent motor patterns of spinal-cord-injured (SCI) subjects during manually assisted stepping on a treadmill. Four nonambulatory subjects, each with a chronic thoracic spinal cord injury, and two nondisabled subjects were studied. The level of loading, EMG patterns, and kinematics of the lower limbs were studied during manually assisted or unassisted stepping on a treadmill with body weight support. The relationships among lumbosacral motor pool activity [soleus (SOL), medial gastrocnemius (MG), and tibialis anterior (TA)], limb load, muscle-tendon length, and velocity of muscle-tendon length change were examined. The EMG mean amplitude of the SOL, MG, and TA was directly related to the peak load per step on the lower limb during locomotion. The effects on the EMG amplitude were qualitatively similar in subjects with normal, partial, or no detectable supraspinal input. Responses were most consistent in the SOL and MG at load levels of < 50% of a subject's body weight. The modulation of the EMG amplitude from the SOL and MG, both across steps and within a step, was more closely associated with limb peak load than muscle-tendon stretch or the velocity of muscle-tendon stretch. Thus stretch reflexes were not the sole source of the phasic EMG activity in flexors and extensors during manually assisted stepping in SCI subjects. The EMG amplitude within a step was highly dependent on the phase of the step cycle regardless of level of load. These data suggest that level of loading on the lower limbs provides cues that enable the human lumbosacral spinal cord to modulate efferent output in a manner that may facilitate the generation of stepping. These data provide a rationale for gait rehabilitation strategies that utilize the level of load-bearing stepping to enhance the locomotor capability of SCI subjects.

PMID:
9065851
DOI:
10.1152/jn.1997.77.2.797
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center