Format

Send to

Choose Destination
Brain Res. 1997 Jan 16;745(1-2):1-9.

Low-affinity sulfonylurea binding sites reside on neuronal cell bodies in the brain.

Author information

1
Neurology Service (127C), DVA Medical Center, E. Orange, Newark, NJ 07103, USA.

Abstract

The antidiabetic sulfonylurea drugs bind to sites associated with an ATP-sensitive potassium (Katp) channel on cell bodies and terminals of neurons which increase their firing rates or transmitter release when glucose concentrations rise or sulfonylureas are present. High-affinity sulfonylurea binding sites are concentrated in areas such as the substantia nigra (SN) where glucose and sulfonylureas increase transmitter release from GABA neurons. But there is a paucity of high-affinity sites in areas such as the hypothalamic ventromedial nucleus (VMN) where many neurons increase their activity when glucose rises. Here we assessed both high- and low--affinity sulfonylurea binding autoradiographically with 20 nM [3H]glyburide in the presence of absence of Gpp(NH)p. Neurotoxin lesions with 6-hydroxydopamine (6-OHDA), 5,7-dihydroxytryptamine (5,7-DHT) and ibotenic acid were used to elucidate the cellular location of the two sites in the VMN, SN and locus coeruleus (LC). In the VMN, 25% of the sites were of low affinity. Neither 6-OHDA nor 5,7-DHT affected [3H]glyburide binding, while ibotenic acid reduced the number of VMN neurons and abolished low-affinity without changing high-affinity binding. In cell-attached patches of isolated VMN neurons, both 10 mM glucose and 100 microM glyburide decreased the open probability of the Katp channel suggesting that the low-affinity binding site resides on these neurons. In the SN pars reticulata, ibotenic acid reduced the number of neurons and high-affinity [3H]glyburide binding was decreased by 20%, while 6-OHDA had no effect. In the SN pars compacta, both 6-OHDA and ibotenic acid destroyed endogenous dopamine neurons and selectivity ablated low-affinity binding. In the LC, 6-OHDA destroyed norepinephrine neurons and abolished low-affinity binding. These data suggest that low-affinity sulfonylurea binding sites reside on cell bodies on VMN, SN dopamine and LC norepinephrine neuron cell bodies and that high-affinity sites may be on axon terminals of GABA neurons in the SN.

PMID:
9037388
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center