Send to

Choose Destination
Brain Res. 1997 Jan 16;745(1-2):1-9.

Low-affinity sulfonylurea binding sites reside on neuronal cell bodies in the brain.

Author information

Neurology Service (127C), DVA Medical Center, E. Orange, Newark, NJ 07103, USA.


The antidiabetic sulfonylurea drugs bind to sites associated with an ATP-sensitive potassium (Katp) channel on cell bodies and terminals of neurons which increase their firing rates or transmitter release when glucose concentrations rise or sulfonylureas are present. High-affinity sulfonylurea binding sites are concentrated in areas such as the substantia nigra (SN) where glucose and sulfonylureas increase transmitter release from GABA neurons. But there is a paucity of high-affinity sites in areas such as the hypothalamic ventromedial nucleus (VMN) where many neurons increase their activity when glucose rises. Here we assessed both high- and low--affinity sulfonylurea binding autoradiographically with 20 nM [3H]glyburide in the presence of absence of Gpp(NH)p. Neurotoxin lesions with 6-hydroxydopamine (6-OHDA), 5,7-dihydroxytryptamine (5,7-DHT) and ibotenic acid were used to elucidate the cellular location of the two sites in the VMN, SN and locus coeruleus (LC). In the VMN, 25% of the sites were of low affinity. Neither 6-OHDA nor 5,7-DHT affected [3H]glyburide binding, while ibotenic acid reduced the number of VMN neurons and abolished low-affinity without changing high-affinity binding. In cell-attached patches of isolated VMN neurons, both 10 mM glucose and 100 microM glyburide decreased the open probability of the Katp channel suggesting that the low-affinity binding site resides on these neurons. In the SN pars reticulata, ibotenic acid reduced the number of neurons and high-affinity [3H]glyburide binding was decreased by 20%, while 6-OHDA had no effect. In the SN pars compacta, both 6-OHDA and ibotenic acid destroyed endogenous dopamine neurons and selectivity ablated low-affinity binding. In the LC, 6-OHDA destroyed norepinephrine neurons and abolished low-affinity binding. These data suggest that low-affinity sulfonylurea binding sites reside on cell bodies on VMN, SN dopamine and LC norepinephrine neuron cell bodies and that high-affinity sites may be on axon terminals of GABA neurons in the SN.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center