Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1544-9.

Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia.

Author information

1
Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.

Abstract

Morphine produces analgesia at opiate receptors expressed in nociceptive circuits. mu, delta, and kappa opiate receptor subtypes are expressed in circuits that can modulate nociception and receive inputs from endogenous opioid neuropeptide ligands. The roles played by each receptor subtype in nociceptive processing in drug-free and morphine-treated states have not been clear, however. We produced homologous, recombinant mu, opiate receptor, heterozygous and homozygous knockout animals that displayed approximately 54% and 0% of wild-type levels of mu receptor expression, respectively. These mice expressed kappa receptors and delta receptors at near wild-type levels. Untreated knockout mice displayed shorter latencies on tail flick and hot plate tests for spinal and supraspinal nociceptive responses than wild-type mice. These findings support a significant role for endogenous opioid-peptide interactions with mu opiate receptors in normal nociceptive processing. Morphine failed to significantly reduce nociceptive responses in hot plate or tail flick tests of homozygous mu receptor knockout mice, and heterozygote mice displayed right and downward shifts in morphine analgesia dose-effect relationships. These results implicate endogenous opioid-peptide actions at mu opiate receptors in several tests of nociceptive responsiveness and support mu receptor mediation of morphine-induced analgesia in tests of spinal and supraspinal analgesia.

PMID:
9037090
PMCID:
PMC19828
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center