Format

Send to

Choose Destination
Eur J Biochem. 1997 Jan 15;243(1-2):430-6.

Energy-filtered electron microscopy reveals that talin is a highly flexible protein composed of a series of globular domains.

Author information

1
Cell Biology, Zoological Institute, Technical University of Braunschweig, Germany.

Abstract

Talin is a multidomain cytoskeletal protein containing discrete binding sites for acidic phospholipids, beta-integrin, actin and vinculin. Hence, it is thought to link microfilaments to the cytoplasmic membrane in cell-matrix adhesion sites, and this should critically depend on talin structure. To obtain more information on the latter, we used energy-filtered transmission electron microscopy of negatively stained talin purified from chicken smooth muscle. We show that in buffers of physiological ionic strength, talin adopts an elongated shape (56 +/- 7 nm in length), consisting of a series of globular masses. While these compact elements, arranged like beads on a string, were of rather uniform dimensions (3.8 nm in diameter), their center-to-center spacings varied, indicating the flexibility of the connecting strands. The ends of the elongated molecules frequently formed loops. The images obtained are consistent with the assumption that, under the conditions used, the majority of the talin molecules are monomeric. A minor fraction appeared as dimers, composed of two chains only partially intertwined, thus giving rise to Y-shaped particles. Electron micrographs revealed that the biochemically defined 50-kDa N-terminal talin head domain is composed of two globular subunits, while chemical cross-linking provided evidence that the C-terminal 220-kDa fragment is solely responsible for dimerization. These results imply that in the dimeric molecules, the polypeptide chains are arranged in parallel, in contrast to what has been described for human-platelet talin. In buffers of low ionic strength (0.02 M instead of 0.15 M KCl), the molecules collapsed into a compact shape. By showing the high flexibility and versatility of its morphology, our data favour the concept of talin as an important resilient link in microfilament-plasma-membrane attachment.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center