Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1997 Jan 28;36(4):806-11.

X-ray crystal structures of the S229A mutant and wild-type MurB in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine at 1.8-A resolution.

Author information

1
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

MurB catalyzes the second committed step in the synthesis of peptidoglycan, a key component of the bacterial cell wall. The crystal structures of both a S229A mutant and wild-type MurB in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine were solved and refined at 1.8 A resolution. The single point mutation of residue 229 from serine to alanine eliminated a hydroxyl group which has previously been proposed to play a critical role as a proton donor during the second half-reaction of MurB, namely, reoxidation of FADH2 and reduction of the enolpyruvyl substrate. The mutation also resulted in the loss of the water molecule-hydrogen bonded to the serine hydroxyl in the wild-type structure changing the hydrogen-bonding network with in the active site. Comparison of the wild-type and S229A mutant structures confirms that the dramatic kinetic defect of an approximately 10(7)-fold decrease observed for the Ser 229 Ala mutant in the second half-reaction [Benson, T.E., Walsh, C.T., & Massey, V. (1997) Biochemistry 36, 796-805] is a direct result of the loss of the serine hydroxyl moiety rather than other nonspecific active-site changes or general structural defects.

PMID:
9020778
DOI:
10.1021/bi962221g
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center