Send to

Choose Destination
FEBS Lett. 1997 Jan 27;402(1):36-40.

The interleukin 1beta-converting enzyme inhibitor CrmA prevents Apo1/Fas- but not glucocorticoid-induced poly(ADP-ribose) polymerase cleavage and apoptosis in lymphoblastic leukemia cells.

Author information

Institute for General and Experimental Pathology, University of Innsbruck, Austria.


Glucocorticoids (GC) induce programmed cell death (apoptosis) in immature lymphocytes and are an essential component in the therapy of acute lymphatic leukemia. The mechanism underlying GC-induced apoptosis particularly in leukemia cells is, however, not well understood. Most forms of apoptosis seem to employ a common final effector pathway characterized by specific proteolytic events mediated by interleukin 1beta-converting enzyme (ICE) and/or other ICE-like cysteine proteases. These events may result in the morphologic changes characteristic of apoptosis. To determine whether a similar proteolytic pathway is activated during GC-induced leukemia cell apoptosis, we investigated poly(ADP-ribose) polymerase (PARP), a typical target of ICE-like proteases, during GC-induced apoptosis of the human acute T-cell leukemic cell line CEM-C7H2. Our studies showed proteolytic PARP cleavage suggestive of activation of ICE-like proteases that preceeded morphologic signs of apoptosis. We further established stably transfected CEM-C7H2 sublines expressing the cowpox virus protein CrmA that inhibits some, but not all, ICE-like proteases. GC-induced PARP cleavage and apoptosis were neither inhibited nor delayed in crmA-expressing cell lines. In contrast, crmA expression rendered the same lines resistant to Apo1/Fas-induced PARP cleavage and apoptosis. Thus, different proteases might be activated during the effector phases of GC-and Apo1/Fas-induced apoptosis in human leukemia cells.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center