Format

Send to

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 1997 Jan 10;230(1):22-7.

The temporal relationship between protein phosphatase, ICE/CED-3 proteases, intracellular acidification, and DNA fragmentation in apoptosis.

Author information

  • 1Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755-3835, USA.

Abstract

Apoptosis occurs during development and tissue homeostasis, and under conditions of physical and chemical stress. During apoptosis, cells digest their DNA, decrease intracellular pH, shrink, exhibit protein phosphatase activity, and activate members of the ICE/CED-3 family of proteases. This protease activity is identified by cleavage of poly(ADP-ribose) polymerase (PARP). Phosphatase activity during apoptosis is observed as dephosphorylation of the retinoblastoma susceptibility protein (Rb). Serine/threonine phosphatase inhibitors can prevent dephosphorylation of Rb and apoptosis, suggesting that Rb dephosphorylation is an indication of a critical regulator of apoptosis. The experiments described here were designed to establish the temporal relationship between these events. Apoptosis was induced in human ML-1 cells by the topoisomerase inhibitor etoposide. An inhibitor of the ICE/CED-3 protease family, z-VAD-fluoromethylketone (FMK), showed concentration-dependent protection from PARP cleavage, intracellular acidification, DNA digestion, early changes in membrane permeability, and cell shrinkage, thereby placing all of these events downstream of the ICE/CED-3 protease action. However, z-VAD-FMK did not prevent the dephosphorylation of Rb, placing this change upstream of the protease. These results suggest that the imbalance between protein phosphatase and kinase that is responsible for the dephosphorylation of Rb is also responsible for the activation of ICE/CED-3 proteases, which in turn is responsible for all the other events associated with apoptosis.

PMID:
9013702
DOI:
10.1006/excr.1996.3401
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center