Send to

Choose Destination
Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):475-8.

Ribonucleotide reductase in the archaeon Pyrococcus furiosus: a critical enzyme in the evolution of DNA genomes?

Author information

Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, Unité Mixte de Recherches Centre National de la Recherche Scientifique 5616, Université, Joseph Fourier, Grenoble, France.


Ribonucleotide reductase (RNR), the enzyme responsible for deoxyribonucleotide synthesis, has been isolated from Pyrococcus furiosus, a deeply branching hyperthermophilic, strictly anaerobic archaeon. Its gene has been cloned, sequenced, and shown to harbor two insertions encoding inteins. The purified enzyme absolutely requires adenosylcobalamin for activity, a trait that defines it as a member of class II (adenosyl-cobalamin-dependent) prokaryotic RNRs. On the other hand, the archaeal RNR has significant amino acid sequence homology with class I (aerobic non-heme iron-dependent) and class III (anaerobic iron-sulfur-dependent) RNRs present in eukaryotes and bacteria, respectively. It is proposed that this enzyme may be the closest possible relative of the original RNR, which allowed the key "RNA world" to "DNA world" transition, and that the different classes of present-day RNRs are the products of divergent evolution.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center