Format

Send to

Choose Destination
See comment in PubMed Commons below
Infect Immun. 1997 Feb;65(2):395-404.

Salmonella typhi stimulation of human intestinal epithelial cells induces secretion of epithelial cell-derived interleukin-6.

Author information

1
Department of Microbiology and Immunology, F. Edward H├ębert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA.

Abstract

Interleukin 6 (IL-6) is a multifunctional cytokine that has been shown to be associated with both systemic and tissue-specific responses within the host. Moreover, IL-6 is produced by both lymphoid and nonlymphoid cells and has been identified as a growth-inducing, growth-inhibiting, and differentiation-inducing factor for these cells. Recent studies of uropathogenic and upper respiratory pathogens have suggested that epithelial cell-derived IL-6 plays a role in mucosal host-parasite interactions. Since many mucosal enteric pathogens enter the host through the epithelial cells of the distal small intestine, a role for intestinal epithelial cell-derived IL-6 in the initial interaction between bacteria and host might also be predicted. However, no studies to date have determined whether the interaction of any bacteria with the epithelial cells that line the small intestine of the host can induce IL-6. To address this issue, we have established an in vitro model to evaluate the capacity of the gram-negative bacterium Salmonella typhi to induce IL-6 in the small intestine epithelial cell line Int407 and in other intestinal epithelial cell lines. The results demonstrate that both wild-type and live, attenuated S. typhi vaccine strains induce small and large intestine epithelial cells to secrete IL-6, and kinetic analysis suggests that IL-6 may be one of the earliest responses following adherence and invasion of enteric organisms. Thus, these studies suggest a physiologic role for epithelial cell-derived IL-6 in the initial interactions between host and bacterium in the small intestine.

PMID:
9009288
PMCID:
PMC174608
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center