Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 1996 Dec 15;320 ( Pt 3):871-7.

Insulin action in cultured human myoblasts: contribution of different signalling pathways to regulation of glycogen synthesis.

Author information

1
Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, U.K.

Abstract

A key metabolic action of insulin is the stimulation of non-oxidative glucose utilization in skeletal muscle, by increasing both glucose uptake and glycogen synthesis. The molecular mechanism underlying this process has been investigated using a variety of experimental systems. We report here the use of cultured human myoblasts to study insulin control of glycogen synthesis in humans. In these cells insulin stimulates glycogen synthesis approx. 2.2-fold, associated with a similar activation of glycogen synthase (GS) which occurs within 5-10 min of the addition of insulin. Insulin also causes inactivation of glycogen synthase kinase-3 (GSK-3) and activation of protein kinase B, both processes being sufficiently rapid to account for the effects of insulin on GS. Activation by insulin of the protein kinases p70s6K, p90s6K and extracellular signal-regulated kinase 2 (ERK2) is observed, but is significantly slower than the activation of GS. Selective inhibitors of the p70s6K pathway (rapamycin), the ERK2/p90s6K pathway (PD98059) and phosphatidylinositol 3-kinase (wortmannin) have been used to probe the contribution of these components to insulin signalling in human muscle. Wortmannin blocks activation of both glycogen synthesis and GS and inactivation of GSK-3. PD98059 is without effect on these events, while rapamycin is without effect on inactivation of GSK-3 but partially blocks activation of glycogen synthesis and GS. Taken together, these findings suggest that protein kinase B is responsible for the inactivation of GSK-3, but that an additional rapamycin-sensitive mechanism may contribute to the activation of GS and stimulation of glycogen synthesis.

PMID:
9003374
PMCID:
PMC1218009
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center