Send to

Choose Destination
Mol Gen Genet. 1996 Nov 27;253(1-2):95-102.

Effects of mutations in genes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chains in Escherichia coli K12.

Author information

School of Biochemistry, University of Birmingham, UK.


The assembly of anaerobically induced electron transfer chains in Escherichia coli strains defective in periplasmic disulphide bond formation was investigated. Strains deficient in DsbA, DsbB or DipZ (DsbD) were unable to catalyse formate-dependent nitrite reduction (Nrf activity) or synthesize any of the known c-type cytochromes. The Nrf+ activity and cytochrome c content of mutants defective in DsbC, DsbE or DsbF were similar to those of the parental, wild-type strain. Neither DsbC expressed from a multicopy plasmid nor a second mutation in dipZ (dsbD) was able to compensate for a dsbA mutation by restoring nitrite reductase activity and cytochrome c synthesis. In contrast, only the dsbB and dipZ (dsbD) strains were defective in periplasmic nitrate reductase activity, suggesting that DsbB might fulfil an additional role in anaerobic electron transport. Mutants defective in dipZ (dsbD) were only slightly more sensitive to Cu++ ions at concentrations above 5 mM than the parental strain, but strains defective in DsbA, DsbB, DsbC, DsbE or DsbF were unaffected. These results are consistent with our earlier proposals that DsbA, DsbB and DipZ (DsbD) are part of the same pathway for ensuring that haem groups are attached to the correct pairs of cysteine residues of apocytochromes c in the E. coli periplasm. However, neither DsbE nor DsbF are essential for the reduction of DipZ (DsbD).

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center