Send to

Choose Destination
J Biol Chem. 1997 Jan 24;272(4):2116-21.

Saturation of the endocytic pathway for the transferrin receptor does not affect the endocytosis of the epidermal growth factor receptor.

Author information

Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA.


Cell-surface receptors that undergo clathrin-mediated endocytosis contain short amino acid sequences in their cytoplasmic domain that serve as internalization signals. Interactions between these sequences and components of the endocytic machinery should become limiting upon overexpression of the constitutively recycling transferrin receptor (TfR). A tetracycline-responsive system was used to induce overexpression of the TfR up to 20-fold in HeLa cells. Internalization assays indicate the rate of 125I-transferrin uptake per surface TfR is reduced by a factor of 4 in induced cells. Consistent with endocytosis being the rate-limiting step, TfRs shift from an endosomal to more of a plasma membrane distribution with TfR overexpression. The clathrin-associated protein AP-2 has been proposed to interact directly with the cytoplasmic domain of many receptors, yet no changes in the amount or distribution of AP-2 were detected in induced cells. The internalization rate for the epidermal growth factor receptor was also measured, with or without induction of TfR expression. Even though endocytosis of the TfR is saturated in induced cells, 125I-labeled epidermal growth factor continues to be internalized at a rate identical to that seen in uninduced cells. We propose that there are different limiting steps for the endocytosis of these two receptors.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center