Format

Send to

Choose Destination
Eur J Neurosci. 1996 Dec;8(12):2739-47.

Dystroglycan in the cerebellum is a laminin alpha 2-chain binding protein at the glial-vascular interface and is expressed in Purkinje cells.

Author information

1
Gerontology Research Center, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.

Abstract

Dystroglycan is a core component of the dystrophin receptor complex in skeletal muscle which links the extracellular matrix to the muscle cytoskeleton. Dystrophin, dystrophin-related protein (DRP, utrophin) and dystroglycan are present not only in muscles but also in the brain. Dystrophin is expressed in certain neuronal populations while DRP is associated with perivascular astrocytes. To gain insights into the function and molecular interactions of dystroglycan in the brain, we examined the localization of alpha- and beta-dystroglycan at the cellular and subcellular levels in the rat cerebellum. In blood vessels, we find alpha-dystroglycan associated with the laminin alpha 2-chain-rich parenchymal vascular basement membrane and beta-dystroglycan associated with the endfeet of perivascular astrocytes. We also show that alpha-dystroglycan purified from the brain binds alpha 2-chain-containing laminin-2. These observations suggest a dystroglycan-mediated linkage between DRP in perivascular astrocytic endfeet and laminin-2 in the parenchymal basement membrane similar to that described in skeletal muscle. This linkage of the astrocytic endfeet to the vascular basement membrane is likely to be important for blood vessel formation and stabilization and for maintaining the integrity of the blood-brain barrier. In addition to blood vessel labelling, we show that alpha-dystroglycan in the rat cerebellum is associated with the surface of Purkinje cell bodies, dendrites and dendritic spines. Dystrophin has previously been localized to the inner surface of the plasma membrane of Purkinje cells and is enriched at postsynaptic sites. Thus, the present results also support the hypothesis that dystrophin interacts with dystroglycan in cerebellar Purkinje neurons.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center