Format

Send to

Choose Destination
Cytogenet Cell Genet. 1996;75(1):2-6.

Molecular cloning of the papillary renal cell carcinoma-associated translocation (X;1)(p11;q21) breakpoint.

Author information

1
Department of Human Genetics, University Hospital Nijmegen, The Netherlands.

Abstract

A combination of Southern blot analysis on a panel of tumor-derived somatic cell hybrids and fluorescence in situ hybridization techniques was used to map YACs, cosmids and DNA markers from the Xp11.2 region relative to the X chromosome breakpoint of the renal cell carcinoma-associated t(X;1)(p11;q21). The position of the breakpoint could be determined as follows: Xcen-OATL2-DXS146-DXS255-SYP-t(X;1)-TFE 3-OATL1-Xpter. Fluorescence in situ hybridization experiments using TFE3-containing YACs and cosmids revealed split signals indicating that the corresponding DNA inserts span the breakpoint region. Subsequent Southern blot analysis showed that a 2.3-kb EcoRI fragment which is present in all TFE3 cosmids identified, hybridizes to aberrant restriction fragments in three independent t(X;1)-positive renal cell carcinoma DNAs. The breakpoints in these tumors are not the same, but map within a region of approximately 6.5 kb. Through preparative gel electrophoresis an (X;1) chimaeric 4.4-kb EcoRI fragment could be isolated which encompasses the breakpoint region present on der(X). Preliminary characterization of this fragment revealed the presence of a 150-bp region with a strong homology to the 5' end of the mouse TFE3 cDNA in the X-chromosome part, and a 48-bp segment in the chromosome 1-derived part identical to the 5' end of a known EST (accession number R93849). These observations suggest that a fusion gene is formed between the two corresponding genes in t(X;1)(p11;q21)-positive papillary renal cell carcinomas.

PMID:
8995477
DOI:
10.1159/000134444
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center