Send to

Choose Destination
See comment in PubMed Commons below
Clin Pharmacol Ther. 1996 Dec;60(6):636-44.

The hypoalgesic effect of tramadol in relation to CYP2D6.

Author information

Department of Clinical Pharmacology, Institute of Medical Biology, Odense University, Denmark.


Tramadol inhibits norepinephrine reuptake, stimulates serotonin release, and acts with mu-opioid receptors by way of its metabolite (+)-M1. Formation of M1 seems to depend on the genetic polymorphic CYP2D6. The analgesic effect of 2 mg/kg tramadol was evaluated in 15 extensive and 12 poor metabolizers of sparteine in two parallel, randomized, double-blind, placebo-controlled crossover studies that used experimental pain models. In extensive metabolizers, tramadol increased pressure pain detection (p = 0.03) and tolerance (p = 0.06) thresholds, as well as thresholds for eliciting nociceptive reflexes, after single (p = 0.0002) and repeated (p = 0.06) stimulation of the sural nerve. Peak pain and pain area in the cold pressor test were reduced (p = 0.0006 and 0.0009). In poor metabolizers, only thresholds to pressure pain tolerance (p = 0.02) and nociceptive reflexes after single stimulation (p = 0.04) were increased and the reflex threshold was less increased in poor metabolizers than in extensive metabolizers (p = 0.02). The serum concentration of (+)-M1 2 to 10 hours after tramadol ranged from 10 to 100 ng/L in extensive metabolizers, whereas in poor metabolizers serum concentrations of (+)-M1 were below or around the detection limit of 3 ng/ml. It is concluded that formation of (+)-M1 by way of CYP2D6 is important for the effect of tramadol on experimental pain.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center