Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14532-5.

Lipidic cubic phases: a novel concept for the crystallization of membrane proteins.

Author information

1
Biozentrum, University of Basel, Switzerland.

Abstract

Understanding the mechanisms of action of membrane proteins requires the elucidation of their structures to high resolution. The critical step in accomplishing this by x-ray crystallography is the routine availability of well-ordered three-dimensional crystals. We have devised a novel, rational approach to meet this goal using quasisolid lipidic cubic phases. This membrane system, consisting of lipid, water, and protein in appropriate proportions, forms a structured, transparent, and complex three-dimensional lipidic array, which is pervaded by an intercommunicating aqueous channel system. Such matrices provide nucleation sites ("seeding") and support growth by lateral diffusion of protein molecules in the membrane ("feeding"). Bacteriorhodopsin crystals were obtained from bicontinuous cubic phases, but not from micellar systems, implying a critical role of the continuity of the diffusion space (the bilayer) on crystal growth. Hexagonal bacteriorhodopsin crystals diffracted to 3.7 A resolution, with a space group P6(3), and unit cell dimensions of a = b = 62 A, c = 108 A; alpha = beta = 90 degrees and gamma = 120 degrees.

PMID:
8962086
PMCID:
PMC26167
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center