Format

Send to

Choose Destination
See comment in PubMed Commons below
Virology. 1996 Dec 15;226(2):205-16.

Preliminary in vitro growth cycle and transmission studies of HIV-1 in an autologous primary cell assay of blood-derived macrophages and peripheral blood mononuclear cells.

Author information

1
Laboratory of Biochemical Physiology, NCI-FCRDC, Frederick, Maryland 21702, USA.

Abstract

Recent interest focused on the dynamics of HIV-1 replication in primary monocytes/macrophages and T-lymphocytes of the immune system, as well as the standardization of virological and immunological in vitro assays with primary isolates, provided the impetus for these studies. These types of studies have never been performed as they would occur in vivo, i.e., where the envelope of the virus and cell membranes of the two cell types of the same host origin. Therefore, the biological and physicochemical properties of an uncloned, primary dual-tropic isolate HIV-1ADA during the initial lag, log, and stationary phases of viral replication were studied in an autologous donor cell assay in peripheral blood mononuclear cells (PBMC) and blood monocyte-derived macrophages (MDM). Similar total numbers (10(9) virus particles/ml) were produced by both cell types during the stationary period. On a per cell per day basis, during peak stationary periods, 0.92 x 10(3) virions/day for MDMs and 5.31 x 10(3) virions/day for PBMCs were produced. Interestingly, virus replicating from MDMs during the log-growth phase demonstrated the greatest infectious fraction which was 3 logs greater than virus replicating in PBMCs. Despite constant virus particle production in MDMs, the infectious fraction was found to fall 3 to 4 logs over a 10-day period. Due to an infectious fraction less than 1 (0.053 infectious unit/cell/24 hr), virus spread in PBMCs during the rapid log phase could only have occurred by cell-to-cell contact, whereas in MDMs with an infectious fraction of about one infectious particle (approximately 1/cell/24 hr), cell-free transmission could account for the observed results. Most of the MDMs (> 90%) became productively infected, whereas only 5-10% of the total PBMCs were found replicating virus. The period of peak stationary virus production (i.e., stationary phase) was at minimum 4 to 5 times longer in MDMs than PBMCs. Whereas the majority of p24, RT, and gp 120 found to be associated with MDM-derived virions, no increased dissociation of these components was observed in PBMC-derived virions. The virion-associated gp 120 was 3 to 4 times more stable on both PBMC- and MDM-derived virus (> 96 hr) and present at 10-25 times the concentration per virion than that observed for a T-cell-line-adapted laboratory strain of HIV-1 replicating in T-cell lines. These in vitro results suggest that important differences exist between MDMs and PBMCs with regard to the viral dynamics of infection and replication which should provide for a qualitative and quantitative basis to estimate virus replication on a per-cell basis for other known cellular targets of HIV-1. Studying the multiple biophysicochemical characteristics and viral replication dynamics as described herein provides an autologous in vitro model of additional quantifiable parameters for analysis and understanding of virus/host factor(s) and/or antivirals which influence them.

PMID:
8955040
DOI:
10.1006/viro.1996.0648
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center